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Conventional phase-shifting algorithms based on a least-squares estimate use N samples over an incomplete
period of the sampled waveform. We introduce a class of phase-shifting algorithms having N + 1 samples sym-
metrically disposed over one full period of the sampled waveform. Fourier analysis techniques are used to de-
rive these algorithms and modify them to improve their performance in the presence of phase-shift errors.
The algorithms can be used in phase measurement systems having periodic, but not necessarily sinusoidal,
waveforms.

1. INTRODUCTION

Measurement of wave-front phase in an interference pat-
tern by phase-shifting techniques has been applied to
many areas of precision metrology in recent years. 13

Many phase-shifting algorithms that perform well with si-
nusoidal or near-sinusoidal periodic waveforms have been
developed.4' 5 However, in measurement systems that re-
sult in nonsinusoidal periodic waveforms (either by choice
or by imperfections such as phase-shift errors, multiple
interference beams, nonlinearities in detector), the per-
formance of existing algorithms is often inadequate.

We deal with the design and assessment of a class of
phase-shifting algorithms that can be used to evaluate the
phase of the wave front in systems with systematic errors
such as nonsinusoidal periodic waveforms or phase-shift
errors. The algorithms can be tailored to result in
small errors in systems having specific nonsinusoidal
characteristics. These algorithms, which we have called
symmetrical phase-shifting algorithms (SPSA's), can be
implemented by either phase-stepping or integrating-
bucket techniques to give the phase of the wave front at an
array of points. The SPSA is characterized by having
N + 1 samples separated by N equal intervals over one
full period. There is a close correspondence with the
well-known N-sample, least-squares estimate algorithms'-'
that do not extend over the full period of the sampled
waveform. Associated with the SPSA's is a design and
assessment technique based on Fourier representation
introduced by other researchers 9 for analysis and perfor-
mance assessment of existing algorithms. We have ex-
tended these principles and derived a strategy for the
design of the SPSA's.

The well-known five-sample algorithm is shown to be
an example of the SPSA's. By way of an additional ex-
ample we present in detail an algorithm having seven
samples.

Throughout this paper we adopt the convention of call-
ing the SPSA's N + 1 algorithms to distinguish them
clearly from conventional N-sample algorithms.

2. FOURIER REPRESENTATION OF
PHASE-SHIFTING ALGORITHMS

Consider a periodic nonsinusoidal interference pattern or
waveform as shown in Fig. 1(a). The phase of this pattern
needs to be evaluated at an array of points-generally a
one- or two-dimensional grid. The nonsinusoidal pattern
can be created by interferometric techniques or by other
means such as the projection of a transmission grating.

Let g(t) be the intensity distribution of the pattern at
a designated point (x, y) on a two-dimensional array as
a function of t, the shift parameter that can represent a
temporal or spatial shift. In general g is a real function
of the array point position (x, y) and the parameter t. For
simplicity our analysis is mostly confined to a single point,
although it is applicable to all other points in the array.

It is important to note that g is a periodic function of
t but not necessarily a periodic function of x or y, i.e.,
g(t + Tg) = g(t), where Tg is the period. In general, g(t)
can be written as a Fourier series:

g(t) = 2 an cos(2 7rnvgt + on),

n-0
(1)

where (Fn = 4n(xy) is the phase of the nth harmonic of
the fundamental frequency vg in the pattern at a desig-
nated position (x, y) in the array, n is a positive integer, an
is the weight of the nth harmonic (a real number), and
vg = 1/Tg is the fundamental frequency.

Since g(t) is a periodic function, its spectrum G(v), the
Fourier transform'0 (FT) of g(t), is a discrete function
with components at frequency v = +nvg. Figure 1(b)
shows a typical IG(v)l. Generally it is the phase 4F, of the
fundamental frequency (n = 1) that needs to be mea-
sured, but to keep the analysis general we consider an ar-
bitrary (but fixed) harmonic, n = m.

In order to measure OFm with phase-shifting techniques,
we record a number of samples of the shifted intensity
pattern g(t) by the use of phase-stepping or integrating-
bucket methods.
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Fig. 1. (a) Periodic interference or grating pattern g(t).
(b) G(v)l the modulus of the Fourier spectrum of g(t).

As outlined by Freischlad and Koliopolous, 9 the phase
(Fm can be evaluated by using the principle of quadrature
phase detection in heterodyne phase measurements. Here
the phase m is obtained from an aretangent of a func-
tion. This function is the ratio of the imaginary part to
the real part of the sampled signal's mth Fourier compo-
nent. The relevant results of the Fourier description of
Freischlad and Koliopolous9 are now presented as the
basis for later analysis.

The heterodyne process can be described by correla-
tionsl0 of the signal g(t) with two sampling functions fi(t)
and f2(t) that define the phase-shifting algorithms. Typi-
cally f 1(t) and f 2(t) represent a small number of equispaced
samples having sine and cosine weighting, respectively.
The two correlations p(t) and q(t) are given by

p(t) = g ( f = f g(T)fi(T + t)dT, (2)

q(t) = g (D f2 = f g(T)f2 (T + t)dT. (3)

It can be shown that

P(0) = ' 2i[exp(i(DF.)F*(nvg) + exp(-i(DFn)F*(-nvg)],
n=O 2

(4)

q(0) = an [exp(i(D.)F2*(nvg) + exp(-i(Dn)F2*(-nvg)],
n,-0 2

(5)

where i = %/-I, Fl*(P) is the complex conjugate of F1(v),
the FT of fi(t), and F2*(v) is the complex conjugate of the
FT of f2(t). From Eqs. (4) and (5) it can be seen that both
p(0) and q(O) are series related to the values of Fl(v) and
F2(v) at discrete values of the frequency v = nvg.

The phase (m can be obtained from the ratio r of p(O)
and q(0), i.e.,

p(0) (6)

The above relation can be used to determine (m if the
following conditions are satisfied:

anFl*(nvg) = -iA8(n, m),

an F2*(nvg) = AS(n, m),

(7a)

(7b)

where A is a constant (generally complex), 8(n, m) is the
Kronecker delta function, and m and n are integers, i.e.,

8(n, m) = 1 for m = n,

8(n, m) = 0 for m n.

In other words it is necessary for the spectra G(v) and
Fl(v) to have only one common frequency component. A
similar relation also holds between G(v) and F2(v). It
follows from Eqs. (7) that the components of Fl(v) and
F2(v) at v = myg should be 90° out of phase and of equal
magnitude,

(8)Fi(mvg) = iF2(Mvg).

Under these conditions Eq. (6) leads to

r = tan((Dm).

3. DEVELOPMENT OF SYMMETRICAL
PHASE-SHIFTING ALGORITHMS

Based on the concepts outlined in Section 2, we now de-
velop the characteristics of a class of phase-shifting al-
gorithms that, as far as we know, have not been reported
previously.

Consider sampling functions with the following proper-
ties:

fi(t) = -fi(-t), i.e., fi(t) is real and odd, (10)

f2(t) = f 2(-t), i.e., f2(t) is real and even. (11)

Hence Fl(v) is imaginary and odd, i.e., F1(v) = -F,(-v),
F1(0) = 0; F2(v) is real and even, i.e., F2(v) = F2(-v). It
therefore follows that F1(v) and F2 (v) can potentially sat-
isfy Eq. (8).

Let us now consider the SPSA's that are based on N + 1
samples, evenly spaced over Tf, the total duration of the
sampling functions. Ideally, Tf = Tg, but the analysis will
be kept general at this stage. This is different from the
algorithms considered by others6 ` in that the present algo-
rithms have an additional sample at the end of the period
Tf (see Section 5 for examples). Therefore f1 (t) can be
written as follows for the phase-stepping case (and similar
equations can be written for the integrating-bucket case):

N
f1(t) = E an,8(t -tn))

n=O

(12)

where an is the (real) coefficient of the nth discrete
sample, 8 designates the delta function, also known as the
impulse response, and

tn=nTf TfN 2

gives the sample positions.

(13)

-
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Similarly for f2 (t),

N

f2 (t) = I p,,8(t - t,) (14)
n 0

where /3,n is the (real) coefficient of the nth discrete
sample. The summation range can be reduced by half
when the symmetry properties are used. If we define an
integer M such that M = N/2 for N even, M = (N - 1)/2
for N odd, then, for the f1(t) given in Eq. (10),

an = -aN-n for n = 0-M, (15)
N

I °a =0 (16)
n-0

One should note that aM = 0 when N is even. The FT of
f1(t) is then

M

Fl(v) = -2i IX an sin(2irvtn). (17)
n-,

Similarly, since f2(t) is even, as shown in Eq. (11), then

/3N-n = 3,n for n = 0-M.

The FT of f2(t) for N even is then

M-1

F2(v) = GM exp(-2 7rivtM) + 2 X A3n cos(2,rvtn),
n-0

or for N odd,

M

F2(v) = 2 n cos(2'iTvtn).
n-0

(18)

(19a)

(19b)

For condition (7b) to be satisfied, in general F2 *(0) = 0,

and this leads to

F2 (0) = 0.

Therefore, from Eqs. (20) and (19) for N even,

M -1

/3M + 2 2 fin = 0,
n-0

or for N odd,

M

2 2 O3, = 0.
n=0

(20)

(21a)

(21b)

That is to say that the sums of the sample coefficients of
both f(t) and f2 (t) are zero.

Applying the least-squares fit method of Greivenkamp7

and Morgan8 to our N + 1 samples over a full period Tf, we
can write the sampling coefficients an and /3n as follows:

an = -sin(T = sin( -) for n = O-N, (22)

/3n, = COs( n) = _ cos( N2 ) for n = 1-(N - 1), (23)

with AN = P = -1/2.
It is important to note that the results in Eqs. (22) and

(23) apply only if a weighted least-squares method is used.
In this case the end samples (n = 0 and n = N) are given

weights of 1/2 and all the other samples weights of 1.
With this selection of weights the 3 X 3 matrix of
Greivenkamp 7 is diagonal and yields these simple results.

The symmetry properties of an and /3,n expressed in
Eqs. (15) and (16) and (18) and (21), respectively, are en-
capsulated in Eqs. (22) and (23). Equations (22) and (23)
fully define the coefficients for the samples in the SPSA's.
The sample positions are given by Eq. (13).

4. FREQUENCY CHARACTERISTICS OF
F)(v) and F2(v)
The frequency spectra of f1(t) and f2(t) are important in
determining the performance of a phase-shifting algo-
rithm in the presence of measurement errors such as
phase-shift errors. Stetson and Brohinsky2 have ana-
lyzed the spectra of the conventional N-step algorithms.
We now discuss some relevant properties of F1(v) and F2 (v)
for the SPSA's and use these in later sections.

From Eqs. (17), (13), and (22),

Fi(v) = -2 i I sin - in si (2 n) v L n -. (24)

This is a continuous, periodic function with a period of
N/Tf when N is even, or a period of 2N/Tf when N is odd.
At the harmonics of the sampling waveform v = mvf,
where vf = 1/Tf and m is an integer, it can be shown from
Eq. (24) that

Fl(mvf) = iN/2 if m = kN + '

Fl(mvf) = -iN/2 if m = kN -1 

Fl(mvf) = 0 otherwise J
(25a)

for any integer k when N is even. When N is odd, the
following applies:

Fl(mvf) = iN/2 if m = 2kN + 1

= -iN/2 if m = 2kN - 1

=iN/2 ifim=(2k + 1)N -1.

= -iN/2 if m=(2k +1)N +1

= 0 otherwise

(25b)

From Eqs. (19), (13), and (23),

F2(v) = 1 - cos(irvTf)

- 2 IX cos - cos [2irv(~.
Tf 1
2j

(26a)

for N even, or

F2 (v) = -cos(7rvTf)

-2 c - cos [27rv(-
M- (2N ) (26b)

for N odd. From Eq. (26a) it can be shown that

F2 (mvf) = N/2 if m = kN 1
=1

F2(mnvf) = 0 otherwise J
(27a)
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where k is any integer and N is even. Likewise from
Eq. (26b), where N is odd, the following applies:

F2(mvf) = N/2 if m = 2kN 1

= -N12 if m = (2k + 1)N± 1 .

= 0 otherwise

(27b)

Note that Eq. (26a) is a function with period N/Tf (except
when N = 4 and the period in this special case is 2/Tf).
Similarly, Eq. (26b) is a function with period 2N/Tf.
From Eqs. (25) it follows that Fn(mvf) = 0, and, from
Eqs. (27), F2(mvf) = 0 only for m # kN + 1; it is therefore
possible to obtain an increasing number of harmonics
with a zero response [i.e., F,(mvf) = F2(mvf) = 0] as the
number of steps N in the algorithm is increased. As is
seen in later sections (e.g., Subsection 5.D), this property
is important in determining the algorithm's susceptibility
to errors such as measurement nonlinearities.

If an integrating-bucket technique is used instead of a
phase-stepping technique to implement the SPSA, then
the fi(t) and f 2(t) functions from Eqs. (12) and (14), respec-
tively, are convolved with a rectangular function. The
corresponding Fl(v) and F2(v) functions are therefore
multiplied by a sinc function that tends to decrease the
response at higher harmonics with respect to the phase-
stepping case.

5. EXAMPLES OF SYMMETRICAL
PHASE-SHIFTING ALGORITHMS

A general expression for the generation of any SPSA ac-
cording to the analysis in the previous sections is given
in Section 8, Eq. (66). Although the algorithms in the
following examples could be generated directly from
Eq. (66), instead we derive these with reference to the
steps outlined in the previous analysis. This approach is
intended to give an insight into the nature and character-
istics of the SPSA's.

The first nontrivial symmetrical algorithm occurs for
N = 3. The resulting four-sample algorithm is not con-
sidered here since its properties will be investigated in de-
tail in a separate publication at a later date. The next
symmetrical algorithm has N = 4 and uses five samples.
In fact this is the well-known five-sample algorithm that
has been analyzed in the literature"",2 but has not been
previously associated with the class of symmetrical al-
gorithms. If we consider this algorithm a member in the
class of SPSA's, it will later become evident why its perfor-
mance is so good in the presence of measurement errors.

A. 4 + 1-Sample Algorithm
The 4 + 1-sample algorithm is the second member in the
class of SPSA's. For the phase-stepping case of this al-
gorithm, from Eq. (13) the phase steps are given by t,, =
(nTf)/4, i.e., each step is (Tf/4) = (,r/2) rad. From Eq. (22)
the coefficients of the sampling function f,(t) are therefore

ao = 0, a, = 1, a2 = 0, a 3 =-1, a4 = 0.

(28)

Likewise from Eq. (23) the coefficients of the sampling

function f2(t) are

/3O = -1/2, ,1= 0, /32 = 1, /33=0, /34 = -1/2.
(29)

Figure 2 shows a graphic representation of these sample
coefficients. Samples with zero coefficients are repre-
sented by filled circles; other samples are represented by
an arrow, indicating an impulse function." From Eqs. (2)
and (12) the correlation p(t) for t = 0 can therefore be
written as

(30)P(0) = g( 4 ()

Likewise from Eqs. (3) and (14)

q(0) = + g(0) 2)

Now let

I (Tf)

13= 0,(-Tf)

Tf) (32)

where I, to I5 designate the intensities of the sampled pat-
tern g(t). Then, from Eqs. (6) and (30)-(32),

p(O) 2(I2 - I4)

q(0) 2I3 - I - 5
(33)

Now if Tg = Tf, i.e., the grating period is equal to the
sampling period, then vg = vf. From Eqs. (25), Fi(vg) = 2i

0

-1 I

-Tf /2

0

0 Tf /4
Shift Parameter t

-Tf /2 -Tf /4 0 Tf /4 Tf /2

Shift Parameter t
Fig. 2. The (4 + 1) sampling function: (a) numerator fi(t),
(b) denominator f2(t).

(31)
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Fig. 3. The (4 + 1) sampling function, FT:
(b) denominator F2(v).

6 7 8

(a) numerator Fl(v),

for m = 1, i.e., the fundamental frequency; therefore,
from Eqs. (4) and (25),

p(O) = 2a, sin(F,).

Likewise, from Eqs. (5) and (27),

q(0) = 2a, cos(Q,).

(34)

ties at some harmonics that make it particularly useful.
To our knowledge the 3 + 1, 5 + 1, and 6 + 1 algorithms
have not been reported previously in the literature. For
the 6 + 1 algorithm the step size is Tf/6 = 7r/3 rad.

From Eq. (22), the coefficients of the sampling function
f,(t) are given by

a:2 =2 a3 = 0,

(38)

Likewise, from Eq. (23), the coefficients of the sampling
function f2 (t) are

/3o =-1/2, , 1 =-1/2, /2 = 1/2, /33 = 1,

(39)

Figure 4 shows a graphic representation of a,, and 3,,
sampling coefficients.

In a way similar to the aforementioned 4 + 1-sample al-
gorithm, it can be shown that

tan(Fl) = /3 (-I

where

I3 (6 
I (Tg)

i9
(35)

Equations (34) and (35) are valid only if the condition in
Eqs. (7) applies, that is to say, only if there are no odd-
order harmonics in g(t). From Eqs. (34) and (35) one finds

r = p(0)/q(0) = tan(FD,),

and from Eqs. (33) and (36),

tanQ(F) - 2(I2 - I4)
2I3 - I - I5

(36)

(37)

This is the well-known expression for the five-sample
phase-shifting algorithm. 1112

Figures 2(a) and 2(b) show the sampling functions f(t)
and f2 (t) for the 4 + 1-sample symmetric algorithm. Fig-
ures 3(a) and 3(b) show the Fourier transforms Fl(v) and
F2 (v) for the 4 + 1-sample symmetrical algorithm. Note
that both F (v) and F2 (v) have zeros at all even harmonics
and Fl(v) has stationary points at all odd harmonics, while
F2 (v) has stationary points at all harmonics including the
first (or fundamental). F(v) and F2(v) for the five-sample
case were derived previously.9

B. 6 + 1-Sample Algorithm
The third member of the class of symmetrical phase-
shifting algorithms is the 5 + 1-sample algorithm. By
using the techniques outlined so far, it is a simple exercise
to derive the algorithm and hence the frequency response
characteristics. However, it is the fourth member of the
class-the 6 + 1-sample algorithm-that is analyzed in
more detail here. The 6 + 1-sample algorithm has proper-

0 I

(12 + I3 - 15 - I6)

- 2 + 13 + 2I4 + I5 - I6 - I7)

I2 = 3

I4 = (0), I5 = g(6 

I (Tg)~~~~

0 Tf /6 Tf /3

, (40)

(41)

Tf /2

Shift Parameter t

O _

_1 
-Tf /2 -Tf /3 -Tf /6 0 Tf /6 Tf /3 Tf /2

Shift Parameter t
Fig. 4. The (6 + 1) sampling function: (a)
(b) denominator f2 (t).

numerator f(t),

(b)I' I I I

I I I I I

I I

b . . ~i 

\\\4%4 1I/
I I

-Tf /2

1 -
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() I radienA

l l l-

0 1 2 3 4 5

equal in magnitude and in quadrature. This could, for
example, be due to phase-shift calibration errors where
vg 7 vf. Since (Di is evaluated from the ratio of p(O) and
q(O), i.e., Eq. (6), in the presence of phase-shift errors, the
change in p(O) should ideally be matched by that in q(O)
so that the ratio remains unchanged. For a sinusoidal
intensity g(t), this ratio defined in Eqs. (4)-(6) may be
written as

r = tan(F 1') = Re[F(i)] tan(CF1),R[2(i'g)]ta(D) (44)

where (C,' is the calculated phase and can be expressed as
CF,' = (D1 + ACF1, where A(Cj is the error in the calculated
phase. F(vg) and F2(vg) can be approximated by the first-
order Taylor series expansions at Vf:

Fl(vg) Fl(vf) + AV dF(vf)
dv'

Similarly, for F2( g),

F2(vg) F2(Vf) + AVi F2(vf)
6

(45)

(46)

Frequency v/vf

Fig. 5. The (6 + 1) sampling function, FT:
(b) denominator F2(v).

(a) numerator Fi (v),

where Av = vg - Vf is small. ACD1can be determined from
the relative gradients of F1(v) and F2(v) in the vicinity of
v= Vf. Ideally, in order to minimize errors in CF,, one
should match these gradients or slopes, i.e.,

C. Frequency Spectra of F1(v) and F2(v) for the
6 + 1-Sample Algorithm
From Eq. (24) with N = 6,

F1(v) = Vi[sin + sin( )]

Likewise, from Eq. (26a),

F2(V) = 1 - cost-) + Cos( ) os(2r-)

dFl(vf) . dF2 (vf)

dv v dv
(47)

To have stationary points at F1 (vf) and F2(vf) is the ideal
(42) situation. To show how these gradients affect the error

in the calculated phase, by way of an example we now con-
sider the performance of the 6 + 1 algorithm presented in
Subsection 5.B. From Eq. (42),

(43)

These equations are plotted as a function of v/vf in Fig. 5.
Although these functions extend indefinitely for both posi-
tive and negative frequencies, they have been plotted only
for 0 C V/Vf < 6. As we mentioned after Eq. (24), the pe-
riod of these functions is 6Vf in this case.

D. Error Susceptibility of the 6 + 1-Sample Algorithm
From Fig. 5 it can be seen that because of the zero re-
sponse in both Fl(mvf) and F2(mvf) for m = 0, 2,3,4,6,...,
this algorithm will have low susceptibility to errors in cal-
culated phase because of measurement nonlinearities
(e.g., detector and illumination) that result in g(t) having
components at these harmonics. This algorithm is, how-
ever, not immune to errors produced by the presence of
the fifth harmonic in g(t). If the 6 + 1-sample algorithm
is implemented with an integrating-bucket method, the
fifth harmonic will be less of a problem. If the fifth har-
monic causes unacceptable errors, then an algorithm with
more than seven steps will cure this problem.

6. IMPORTANCE OF GRADIENTS ALONG
F 1(v) and F2 (v)

In a practical phase measurement system, Eq. (8) may not
be satisfied, that is, the sampling functions may not be

(48)dFi(Vf) Vri

dv 2 <7 f 

Likewise, from Eq. (43),

dF2(Vf) v (49)
dv 2V3i Vf

These gradients are shown in Fig. 5 by tangents to F1(v)
and F2(v) at v = Vf.

From Eqs. (48) and (49),

dFl(vf) .dF 2 (vf) i'rr
d - di =- (50)dv dv 3 Vf'

which shows clearly that condition (47) is not satisfied.
If e is the step-to-step phase-shift error, then the error

ACD1 in the calculated phase (D, of the fundamental can be
shown from expansion of Eq. (40) or directly from Eq. (44)
to be

ACFj = (e/2N/)sin(2CF 1) (51)

for e << 1 rad. The error is at twice the frequency of the
fundamental.

The preceding analysis considered a system with sinus-
oidal intensity distribution g(t). In practical systems,

4i

0

-4i

4

(N15S
0

-4
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where g(t) has higher-order harmonics and phase-shift er-
rors occur, the error in the calculated phase CFj' will also
depend on the gradients at those harmonics. This depen-
dence can be formulated by expressingp(O) and q(0) from
Eqs. (4) and (5), respectively, as first-order Taylor series
expansions.

7. MODIFIED SYMMETRICAL
PHASE-SHIFTING ALGORITHMS THAT
ELIMINATE PHASE-SHIFT ERRORS
The error in CFj' that is due to the phase-shift error can be
eliminated by modifying Fl(v) so that Eq. (47) holds. This
can be achieved by adding to F 1(v) another function C(v)
that has the following properties:

(i) Zero value at all harmonics (v = mvf);
(ii) Nonzero imaginary slope at v = f; and
(iii) Its inverse Fourier transform should be

function.
a discrete

Condition (i) ensures that the modified algorithm has
exactly the same effect as the unmodified algorithm
when the phase-shift error is zero. Condition (ii) allows
a change to be made to the gradient of the spectrum of
the sample function Fl(v). Condition (iii) ensures that
the modified algorithm can be implemented by using dis-
crete samples.

It is worth noting that the modified algorithm may no
longer satisfy the weighted least-squares fit conditions
that determine Eqs. (22) and (23). However, it can be
shown that condition (i) maintains the algorithm's perfor-
mance at all harmonics when the stepping is correct. A
simple sine wave turns out to be the function C(v) that
fulfills the aforementioned conditions:

C(v) = 2ico sin P (52)

From Eq. (24), which defines the spectrum Fl(v),

dFl(vf) 2iNTf M t2'rn( 27rn
di'- N (2n - N)sin Cos (59)

Likewise from Eqs. (26), which define the spectrum F2(v),
for N even

dF2(vf) = 27rTf l 2irn~ 27rn~

dv -N E (2n - N)cos sin (2N) ' (60a)

and for N odd

d N (vf(n _ 2vcost 2'-rn- 2in rn\dF2vf 2'r- 3 (2n - N )cos si
dvi' N ,,. 1 ( N ) N )

(60b)

Equations (59) and (60) hold for any SPSA.
To correct for phase-shift errors in systems with sinus-

oidal intensity distributions, we try to make

dFl'(vf) i dF2 (vf)

dv dv
(61)

This equation is analogous to Eq. (47) in Section 6.
Combining Eqs. (61) and (58) gives

dC(vf) i dF2 (vf) _ dFl(vf)

dv dv dv

Combining Eqs. (62), (60a), (59), and (55)
Eq. (63a), which is valid for N even:

1 M-1 - 47n)
co = - (N -n)sin(-)

N n- NJ

Co

where c is a real number. The discrete sampling func-
tion corresponding to C(v) is its inverse Fourier transform:

c(t) = co{8(t - 2) - 8(t + U(53)
0

Figure 6 shows both C(v) and c(t). Now the slope of C(v) is

dC(v) 2irico rv
=d - cos_-;

di Vf \

therefore,

dC(vf) _ ico2 7r
dv Vf

Now if we define a new sampling function

fi'(t) = f(t) + c(t)

and its FT

Fl'(v) = F(v) + C(v),

we have

dFl'(vf) = dF1(v) + dC(v)
dv dv dv

(54) 0

Shift Parameter t

2ic.

(55)

0
U

(56)

(57) -2ic.,

(62)

results in

(63a)

T /2

0 1 2 3 4 5

Frequency v/vf

(58) Fig. 6. (a) Modifying sampling function c(t).
the modifying sampling function.
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Similarly, when N is odd,

i M 47~~~(s±rn~
CO = - (N - 2n)sin I. (63b)

Equations (63) define how the symmetrical phase algo-
rithms discussed in Section 3 can be modified to produce
new algorithms with well-defined Fourier components
(specifically, the gradients of the FT at the fundamental
frequency) that result in error-correcting characteristics.

It is interesting to note that for the 4 + 1-sample algo-
rithm (N = 4) c0 = 0, so it is not necessary to modify the
F1(v) function in this case since Eq. (61) is inherently satis-
fied. In fact, for the 4 + 1-sample algorithm, the gra-
dients of FW(i) and F2 (v) at v = f are equal to zero since
there are turning points at this fundamental frequency.
This explains the good performance of this algorithm in
the presence of phase-shift errors.

For the 6 + 1-sample algorithm N = 6 and from
Eq. (63a),

nism of the phase-shifting process. The symmetrical
phase-shifting algorithms offer considerable flexibility in
tailoring the most suitable algorithm for specific measure-
ments. For example, if the frequency spectrum of the
waveform to be measured is known, then the most suit-
able phase-shifting algorithm can be easily derived.

The outlined procedure for modifying the SPSA's to
minimize the effect of phase-shift error adds to the phase
measurement accuracy achievable in practical systems
while relaxing the tolerance requirements on the phase-
shifting mechanism. The modified algorithms require
the same number of steps and computer storage facilities
as their unmodified counterparts. SPSA's can be easily
implemented in modern microcomputers for rapid and ac-
curate phase measurements over a large grid of points.

The N + 1-sample SPSA's developed in this paper can
be concisely represented by the following generic equa-
tions. First, the unmodified SPSA is

12Co0 = 7 (64)

Equation (40) therefore changes to the following:

tan(CFl) = \/3(I2 + 13 - 151 - 16) + (17 - ID/\/3- (65)
(-( I -I2 + 3 + 2I4 + 15 - I6 - I7)

This is the modified seven-sample algorithm that compen-
sates for phase-shift errors. With reference to Fig. 4(a),
the above algorithm introduces two additional samples for
a0 (i.e., -I,) and a6 (i.e., I7) at either end of the sample
period Tf. If there are no phase-shift errors these two
samples make no contribution to the sampled signal.
However, with phase-shift errors, the sampled waveform
moves with respect to the sample positions, and these ad-
ditional samples ensure that the change in the numerator
of Eq. (65) compensates for the change in the denomina-
tor. This will cancel the effect of the phase-shift error.

Figure 7(a) shows the modified sampling function f1'(t)
for the 6 + 1-sample algorithm, and Fig. 7(b) shows its
Fourier transform F1'(v). A general expression for gener-
ating any SPSA with error-correcting properties is given
in Section 8, Eq. (68).

As we mentioned above, the modified sampling function
f1'(t) may no longer be derivable from the least-squares
fitting outlined in Section 3. However, it may be the case
that fi'(t) is derivable from a more general least-squares
fitting technique that encompasses the effects of phase-
shift errors. This conjecture has not been investigated so
far. The value of c0 determined by Eqs. (63) produces
functions F1' and F2 with matched gradients at v = vf.
Interestingly, criteria other than gradient matching may
be used to determine a value for c0. For example, the
phase error ACD can be decomposed into a series of factors
related to the harmonics present in g(t). Hence c0 may be
defined to constrain these harmonic components in some
way (for example, a minimum rms error).

8. SUMMARY

The Fourier analysis used here to derive a new class of
phase-shifting algorithms also adds insight into the mecha-

tan(^D1) = (66)n-1 (N)
(I1 + IN+1) N- (21rn

2 - c Cos In+1

The intensity values are defined by

In,,+ = g(tn) for n = O-N,

where t is given by Eq. (13) and the phase-step size is TfIN
or, equivalently, (3600 /N).

i * I

-1 I I I I I

-Tf /2 -Tf /3 -Tf /6 0 Tf /6 Tf /3 T /2

Shift Parameter t

4i

0

-4i

0 1 2 3 4 5 6

Frequency v/vf

Fig. 7. (a) Modified (6 + 1) sampling function fi'(t) with error-
correcting properties. (b) The modified (6 + 1) sampling func-
tion FT Fi'(v).

(67)

I I I I I
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Second, the equation for the modified (error-correcting)
SPSA is

tan(CD 1) =

CO(IN+1 - I) + ' sin N)In+Il

(I1 + IN+1) 1 (21rn
2 - E Cos VN In+

(68)

and c0 is given by Eqs. (63). Equations (66) and (68) can
be used to generate SPSA's for any value of N > 2.
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